If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=882
We move all terms to the left:
x^2-(882)=0
a = 1; b = 0; c = -882;
Δ = b2-4ac
Δ = 02-4·1·(-882)
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{2}}{2*1}=\frac{0-42\sqrt{2}}{2} =-\frac{42\sqrt{2}}{2} =-21\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{2}}{2*1}=\frac{0+42\sqrt{2}}{2} =\frac{42\sqrt{2}}{2} =21\sqrt{2} $
| 7/9=w+4 | | 3.14^(x)-3.14^(2x)=0 | | 4(5x-2)=2(9x+5) | | 60x+x^2=(x+15)(x+15) | | -8(x+4)+2x=-4(x-8)-2x | | x5/2−25x1/2=0 | | -v+5=253 | | 237=6-x | | 7(-y+5)=-8+3(-4-6y) | | 5^4x-5^4x+1=-100 | | 4/5y-2=-9/10y+30 | | 8x-28=2x^2+2 | | -0.013=0.029+3x | | -2(5n-3)=25-3(1+4n) | | 8z+8-4z=10+3z-5 | | -7.4=0.5x-16.7 | | 3-3y=2-4y | | 213=13x-138 | | 2(3x+10)=-10 | | 125x-75=0 | | -9x+26=-5(x-2) | | 364.67=1.07x | | 4.3x-15.98=3.8 | | x-5/3-3-2x/2=5/4-2(1-x) | | 11/3=-1/15c | | 110x+9.7=4.2 | | 6y+1-y=2+4y-5 | | 5÷9(2a-7)=25 | | 90=250x-0.5x^2 | | 90=40x+20 | | 65+0.75x=88+0.85 | | 0.79x+16=1.59x |